The Crystal and Molecular Structure of Tris (thiourea) zinc (II) Sulphate

BY GIOVANNI DARIO ANDREETTI, LUIGI CAVALCA & AMOS MUSATTI Istituto di Chimica Fisica, Università degli Studi, Parma, Italy

(Received 27 July 1967)

The crystal structure of $Zn[SC(NH_2)_2]_3SO_4$ has been determined by a three-dimensional X-ray analysis and refined by differential methods using anisotropic thermal parameters; final R=0.091. Four formula units are contained in the orthorhombic ($Pca2_1$) unit cell: $a=11.12_6$, $b=7.77_3$, $c=15.49_1$ Å. Zn coordinates to three S's from three thiourea molecules (Zn-S 2.33, 2.32 and 2.31 Å) and to one O from a sulphate group (Zn-O 1.98 Å), to form a tetrahedral arrangement. There are no significant differences between corresponding bond distances and angles in the three thiourea molecules, which are much the same as in the uncoordinated thiourea. Packing and hydrogen bonding are discussed.

Introduction

Thiourea-complexes of divalent metal sulphates have been prepared and preliminary examinations have been made by X-ray diffraction by Nardelli & Chierici (1958). Among these compounds, mono(thiourea) cadmium sulphate dihydrate, $CdtuSO_4.2H_2O$, has been studied recently by a three-dimensional X-ray analysis which showed its crystal structure to be polymeric (Cavalca, Domiano, Fava Gasparri & Boldrini, 1967). In continuing this research, the crystal structure of tris(thiourea)zinc sulphate has been studied and the results of this analysis are reported in the present paper.

Experimental

Crystal data, refined by a least-squares procedure on powder diffractometer data, are as follows:

Zn[SC(NH₂)₂]₃SO₄, M = 389.8 $a = 11.126 \pm 0.005$; $b = 7.773 \pm 0.004$; $c = 15.491 \pm 0.005$ Å V = 1339.7 Å³, Z = 4, $D_m = 1.923$, $D_x = 1.926$ g.cm⁻³ $\mu = 83$ cm⁻¹ (Cu K α)

F(000) = 792

Space group Pcam (D_{2h}^{11}) or $Pca2_1$ (C_{2v}^5) (from systematic absences).

Two series of equi-inclination Weissenberg photographs were taken at room temperature with use of the multiple-film technique and Ni-filtered copper radiation. The layers around [100] were collected with h=0,1...10 and around [010] with k=0,1...6. 1455 independent reflexions were observed out of a possible 1592. The intensities were measured photometrically and corrected for Lorentz, polarization and spot-shape factors. For the photographs taken around [100] the sample used was a roughly spherical fragment of mean radius 0.036 cm, and for the data taken around [010] a needle, with rectangular cross-section of mean radius 0.045 cm, was used. The absorption correction was calculated for the first set of data considering the sample as a sphere and for the second set assuming the sample to be a cylinder. The data of both zones were correlated and put on a common scale using the least-squares procedure of Rollett & Sparks (1960). The absolute scale was determined first by Wilson's method, then at the end of the refinement by comparison with the calculated values.

Table 1. Final atomic fractional coordinates (\times 10⁴), thermal parameters (\times 10 Å²) with e.s.d.'s and ratios (e.s.d.)/(coordinate shift)

	x/a	y/b	z/c	B11	B ₂₂	B ₃₃	B ₂₃	B ₁₃	B ₁₂	r(x)	r(y)	r(z)
Zn	637 ± 2	1589 <u>+</u> 2	-6 ± 1	32 <u>+</u> 1	33 ± 1	23 <u>+</u> 1	0 ± 1	0 ± 1	0 ± 1	10	3	20
S(1)	1268 ± 3	3457 <u>+</u> 4	1685 <u>+</u> 2	26 ± 1	26 ± 1	17 <u>+</u> 1	0 ± 2	1 ± 2	0 ± 1	15	10	∞
S(2)	2040 ± 3	-18 ± 5	-781 ± 2	25 ± 1	38 ± 1	23 ± 1	-5 ± 2	-1 ± 2	0±1	15	25	3
S(3)	-812 ± 3	-26 ± 5	688 <u>+</u> 2	26 ± 1	34±2	24 ± 1	5 ± 2	0±2	0 ± 1	4	5	10
S(4)	-213 ± 3	3305 ± 5	-1071 ± 2	31 ± 1	36±2	20 ± 1	1 ± 2	2 ± 2	4±2	15	7	∞
O (1)	1540 ± 9	3143 ± 9	767 ± 6	35 ± 4	34 ± 4	24 ± 3	-3 ± 5	1±6	-6 ± 4	5	6	2
O(2)	1644 ± 12	1948 ± 16	2208 ± 7	38 ± 5	39 ± 6	29 ± 4	2±7	-2 <u>+</u> 7	3±6	7	5	7
O(3)	-9 ± 12	3788 ± 15	1796 ± 7	34 ± 4	40 ± 5	32 <u>+</u> 5	3±7	-1 ± 7	-2 ± 5	4	40	4
O (4)	1976 ± 9	4963 ± 15	1960 <u>+</u> 7	32 ± 3	33 ± 4	27 ± 4	1±6	-1 ± 5	-5 ± 4	2	20	4
N(1)	1659 ± 15	-1386 ± 23	2277 ± 7	43 ± 6	56±8	32 ± 4	-10 ± 8	-2 ± 8	1 ± 8	3	30	4
N(2)	-11 ± 10	-1319 ± 17	-1408 ± 7	33 ± 4	42 ± 6	30 ± 4	8±7	-1 ± 7	-3 ± 5	2	2	4
N(3)	-711 ± 13	-2464 ± 17	1849 ± 7	40 ± 6	35 ± 5	25 ± 5	-4 ± 7	2 ± 8	-2 ± 6	4	4	3
N(4)	1029 ± 14	2 097 <u>+</u> 17	1106 ± 12	34 ± 5	28 ± 6	42±9	8 ± 11	5 ± 11	2±7	40	3	5
N(5)	-2185 ± 14	5050 ± 28	-1150 ± 9	40 ± 6	50 ± 10	30 ± 5	7±9	-1 ± 9	4 ± 11	70	4	50
N(6)	-1494 ± 16	4564 ± 22	239 ± 8	35 ± 7	41 ± 8	22 ± 4	8±8	3 ± 8	-3 ± 8	8	3	3
C(1)	1151 ± 12	-1009 ± 19	-1538 ± 7	31 ± 5	33 ± 6	21 ± 4	2 ± 6	-3 ± 7	-4 ± 7	3	4	3
C(2)	-87 ± 12	-1656 ± 18	1243 ± 8	33 ± 5	34 ± 6	29 ± 5	1±6	-4 ± 8	0±8	4	16	1
Cá	-1384 + 16	-4413+19	-598 + 9	36 + 7	25 + 5	23 + 5	4 + 7	3+9	3 + 8	6	5	5

Structure determination and refinement

From a piezoelectrical experiment the crystals were found to be non-centrosymmetric, and the $Pca2_1$ space group was chosen. From a three-dimensional Patterson synthesis the x, y coordinates for the Zn atom were obtained and a zero value was assigned to the z coordinate as there are no symmetry conditions limiting the choice of the origin along the z axis. Using the phases of the contributions of the zinc atom alone to the structure factors, a spurious mirror plane, running through the zinc atom perpendicular to [001], was introduced in the first Fourier calculation. Nevertheless, it was easy to find two enantiomorphous tetrahedral distributions of peaks around the zinc atoms which could be attributed to four sulphur atoms. Choosing one of these distributions, a starting series of coordinates for the heaviest atoms was obtained which gave a residual error index of R=0.28. Successive Fourier syntheses led to the location of all the other non-hydrogen atoms. At this point, the refinement was continued by using Booth's differential synthesis, first with two isotropic cycles and then with four anisotropic cycles; the final values of the residual error index were R=0.091, R'=0.099 (R for observed reflexions only, R' considering also the unobserved reflexions, assuming $F_o=\frac{1}{2}F_{\min}$ when $F_c \ge F_{\min}$; multiplicities not considered).

Zn	obs. calc.	е 73·4 73·3	- A _{hh} 696 702	$\begin{array}{c} -A_{kk} \\ 700 \\ 703 \end{array}$	– Au 761 754	$\begin{array}{c}A_{kl}\\-8\\-7\end{array}$	Ani -4 -5	Ank -2 -2
S(1)	obs. calc.	39·9 39·8	390 391	400 400	431 427	5 5	8 6	1 2
S(2)	obs. calc.	36·2 36·1	377 374	329 336	375 371	-18 - 10	-13 - 12	$-2 \\ -3$
S(3)	obs. calc.	36·4 36·3	370 368	339 344	371 372	25 19	-11 - 10	7 7
S(4)	obs. calc.	35·5 35·5	340 341	325 331	382 376	-5 - 8	19 18	19 12
O (1)	obs. calc.	13·9 13·7	115 117	134 135	110 107	-12 - 10	-11 -12	-19 -18
O(2)	obs. calc.	12·6 12·2	95 96	89 89	105 105	-5 -7	4 4	-6 -7
O(3)	obs. calc.	12·5 12·5	87 87	109 109	116 114	10 9	-1 - 1	-4 -4
O(4)	obs. calc.	13·4 13·6	116 117	108 108	124 123	3 4	0 1	1 3
N(1)	obs. calc.	9·6 9·5	75 75	68 71	97 96	8 5	1 1	4 4
N(2)	obs. calc.	10·6 10·7	101 103	83 88	95 97	8 6	$-2 \\ -1$	-4 - 3
N(3)	obs. calc.	11·2 11·0	87 90	94 94	115 114	10 4	-7 -8	9 9
N(4)	obs. calc.	10·5 10·8	85 87	113 118	79 82	10 7	4 4	5 5
N(5)	obs. calc.	9·7 9·6	79 79	66 70	86 86	5 5	-5 -4	6 4
N(6)	obs. calc.	10·7 10·5	84 85	82 85	100 99	-7 -7	8 7	14 11
C (1)	obs. calc.	9·8 9·7	84 85	82 83	95 95	$-3 \\ -3$	10 9	$-1 \\ -1$
C(2)	obs. calc.	9·1 9·3	86 85	84 83	92 89	$-2 \\ -3$	-4 - 3	-2 -2
C(3)	obs. calc.	9·8 9·6	73 74	91 91	92 89	0 0	6 6	4 3
	e.s.d.	0.5	5	6	5	3	3	3

Table 2. Atomic peak heights (e.Å-3), curvatures (e.Å-5) and e.s.d.'s

Table 3. Observed and calculated structure factors

A minus sign for F_0 means 'less than'.

00	h k l 10F ₀ 1 1 1 1107 1 2 1 510	10F _C 3 1129 101 413 268	h k 1 1 2 12 1 3 12	^{10F} o ^{10F} c 177 134 124 111	., 1 48 192	k × 1 2 4 5 2 5 5	10F ₀ 481 214	10F _C X 470 284 205 9	ћ к 201 211	1 10F 17 346 17 91	10F _c 333 81	23 253	h 3 3	k 1 79 89	10F ₀ 165 105	10F _C 178 85	0(104 281
	1 4 1 178 1 4 1 178 1 5 1 678 1 6 1 170 1 7 1 384 1 8 1 114 1 9 1 102 1 10 1 28	300 151 148 254 696 291 152 256 361 79 90 63 74 126 33 313	1 5 12 1 6 12 1 7 12 1 8 12 1 1 13 1 2 13 1 3 13	105 98 257 243 44- 23 141 121 16- 12 352 307 423 417 184 164	297 15 296 155 48 84 67 211	2 7 5 2 7 5 2 9 5 2 9 5 2 9 5 2 9 6 2 1 6 2 2 6	563 89 141 142 929 630 243 673	000 51 71 83 146 63 125 321 939 15 610 25 181 234 758 127	2 3 1 2 4 1 2 5 1 2 0 1 2 1 1 2 2 1 2 3 1	17 253 17 225 17 225 17 97 18 429 18 129 18 129 18 150	192 263 236 144 405 111 79 132	286 324 29C 2 36 43 103 62	333333333333	10 2 10 3 10 4 10 5 10 6 10 7 10 8 10	405 546 87 362 217 144 37- 178	372 551 74 357 210 157 22 178	143 191 169 348 15 130 204
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	659 266 702 154 120 246 282 265 343 33 128 £ 86 274	1 4 13 1 5 13 1 6 13 1 7 13 1 1 14 1 2 14 1 3 14	350 328 170 166 57 51 124 105 205 183 180 158 89 61	272 267 173 101 228 171 17	2 4 6 2 5 6 2 6 6 2 7 6 2 8 6 2 9 6 2 9 7	296 232 193 259 72 184 557	293 220 234 £ 171 15 242 20 77 21 156 136 493 82	2 4 1 2 0 1 2 1 1 2 2 1 3 1 3 2 3 3	18 29 19 170 19 177 19 152 0 605 0 555 0 75	54 174 171 163 804 513 28	123 115 24 330 180 180 0	3 7 7 7 7 7 7 7 7 7	1 11 2 11 3 11 4 11 5 11 6 11 7 11	271 168 68 261 116 69 86	243 160 64 264 109 83 81	69 98 61 237 283 182 39
	1 8 2 222 1 9 2 46- 1 10 2 48- 1 1 3 865 1 2 3 1421 1 3 3 50- 1 4 3 799	195 156 30 270 41 306 983 49 1733 95 17 94 810 266	1 4 14 1 5 14 1 6 14 1 7 14 1 1 15 1 2 15 1 3 15	168 156 183 177 48 48 63 56 227 214 468 456 49- 26	323 68 325 167 178 95	2 1 7 2 2 7 2 3 7 2 4 7 2 5 7 2 6 7 2 7 7	456 153 297 402 166 255 175	415 73 142 190 269 209 377 309 172 80 246 131 160 70	3 4 3 5 3 6 3 7 3 6 3 9 3 1	0 271 0 516 0 49 0 190 0 207 0 207 0 170 1 826	226 553 - 18 170 220 157 613	0 180 180 180 180 180	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 11 1 12 2 12 3 12 4 12 5 12 6 12	63 510 205 81 175 332 58	66 505 185 92 190 353 30	83 184 141 114 328 6 339
81 190 73 171 28 342 99 272 88 41 58 210 84 186	1 5 3 244 1 6 3 371 1 7 3 188 1 8 3 324 1 9 3 44 1 1 4 534 1 2 4 577	222 215 345 287 167 22 305 102 35 121 518 125 582 169	1 4 15 1 5 15 1 6 15 1 1 16 1 2 16 1 3 16 1 4 16	303 321 39- 10 130 109 153 122 182 168 72 58 86 66	262 236 297 129 211 106 30	2 8 7 2 9 7 2 C 8 2 1 8 2 2 6 2 3 8 2 4 6	69 31- 776 569 483 397 321	55 145 25 191 721 356 550 307 469 237 369 162 317 214	3 2 3 3 3 4 3 5 3 6 3 7 3 8	1 318 1 184 1 217 1 414 1 78 1 229 1 148	245 149 202 355 82 210 146	102 206 11 221 90 4 155	33333	7 12 1 13 2 13 3 13 4 13 5 13 6 13	162 210 462 106 258 112 76	158 199 460 101 258 102 89	180 329 122 39 300 160 215
1166 73 648 226 793 165 1145 169 1026 172 307 221 233 84	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	153 3 279 341 188 313 102 120 41 199 155 233 62 55	1 5 16 1 6 16 1 1 17 1 2 17 1 3 17 1 4 17 1 5 17	109 97 11- 65 314 301 136 114 89 95 104 90 272 263	306 18 93 31 87 216 271	2 5 6 2 6 8 2 7 8 2 8 8 2 9 8 2 9 8 2 9 9 2 0 9	162 389 230 150 88 506 787	162 259 397 1 216 313 141 233 54 196 430 80 774 128	3 9 3 1 3 2 3 3 3 4 3 5 3 6	1 34 2 668 2 880 2 249 2 522 2 433 2 123	- 11 622 996 204 492 434	26 229 159 215 321 23		7 13 1 14 2 14 3 14 4 14 5 14 6 16	68 282 295 55 182 193	78 265 295 41 193 205	330 193 167 235 336 30
211 115 167 3 85 303 170	1 1 5 588 1 2 5 796 1 3 5 488 1 4 5 734 1 5 5 453 1 6 5 61	636 86 926 100 466 35 801 280 439 254 58 58	1 1 18 1 2 18 1 3 18 1 4 18 1 1 19 1 2 19	135 122 56 37 35 36 42 49 279 275 136 136	197 104 177 310 96 36	- 2 9 9 2 2 3 9 9 2 2 3 9 9 2 2 3 9 9 2 2 3 9 9 2 2 5 9 9 2 2 5 9 9 2 2 5 9 9 2 2 5 9 9 2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 9 2 5 9 2 2 5 9 2 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	200 689 278 437 88 313	189 201 784 248 269 156 473 131 95 134 323 112	3 7 3 8 3 9 3 1 3 2 3 3	2 190 2 264 2 65 3 468 3 836 3 180	169 287 58 410 851 159	200 162 229 62 139 259		1 15 2 15 3 15 4 15 5 15 6 15	64- 92 40- 122 56 64	11 66 32 126 72 67	5 61 16 209 332 91
739 190 212 183 309 63 90 321 219 173 253 158	1 8 5 248 1 9 5 124 1 1 6 603 1 2 6 247 1 3 6 135 1 4 6 206	133 114 223 105 110 55 560 216 184 234 111 133 166 47	2 0 0 2 1 0 2 2 0 2 3 0 2 4 0 2 5 0	922 1118 568 561 1074 1177 51- 61 858 894 141 130	0 0 180 180 180 180	2 0 10 2 1 10 2 2 10 2 3 10 2 4 10 2 4 10 2 5 10	700 294 529 450 395 255	635 310 274 282 517 202 442 261 386 203 258 277	3 5 3 6 3 7 3 8 3 9 3 1	3 359 3 57 3 169 3 55 3 74 4 838	453 363 55 169 70 75 888	244 135 37 124 97	33333	2 16 3 16 4 16 5 16 1 17 2 17	311 51 146 106 186	203 324 51 146 123 195 137	204 129 38 322 150 38
987 327 314 93 443 152 674 225 265 110 224 82 447 330	1 5 6 330 1 6 6 111 1 7 6 136 1 8 6 54- 1 9 6 123 1 1 7 676 1 2 7 638	307 356 90 232 102 211 10 201 99 184 692 149 667 32	2 6 0 2 7 0 2 8 0 2 9 0 2 10 0 2 0 1 2 1 1	314 267 154 131 75 66 70 58 10- 132 845 922 1015 1217	0 180 180 180 180 119 28	2 6 10 2 7 10 2 8 10 2 0 11 2 1 11 2 2 11 2 3 11	222 126 157 519 561 350 46	219 323 122 297 138 222 525 107 523 177 309 177 51 248	32 33 34 35 36 37 38	4 809 4 120 4 393 4 373 4 117 4 197 4 234	794 88 384 378 116 178 202	180 246 8 349 44 196 204	3 3 3 3 3 3 3 3	3 17 4 17 1 18 2 18 3 18 1 19 2 19	40 66 181 147 78 205 18-	38 81 176 141 85 209 21	146 203 182 163 152 48 149
63 240 4 350 101 309 195	1 3 7 216 1 4 7 365 1 5 7 492 1 6 7 100 1 7 7 234 1 8 7 257 1 9 7 124	180 173 346 225 503 319 100 183 217 134 234 42 112 92	2 2 1 2 3 1 2 4 1 2 5 1 2 6 1 2 7 1 2 8 1	980 1016 464 393 654 601 153 114 428 414 318 299 150 139	297 264 288 358 123 358 346	2 4 11 2 5 11 2 6 11 2 7 11 2 8 11 2 0 12 2 1 12	326 193 283 162 133 367 78	369 206 183 165 300 105 129 143 117 185 325 309 62 223	39 31 32 33 4 35 36	4 56 5 171 5 600 5 154 5 308 5 118 5 105	48 118 604 158 295 110 100	108 353 62 90 242 301 252	4 4 4 4 4 4 4	0 0 1 0 2 0 3 0 4 0 5 0 6 0	479 67 244 57- 78 67 62-	370 47 162 25 51 74 37	180 180 180 180 180 180 0
17 354 58 329 72 358 16 31 10 354 00 336	1 1 8 186 1 2 8 392 1 3 8 162 1 4 8 333 1 5 8 63- 1 6 8 98	120 33 369 160 122 212 324 329 57 76 102 300	2 9 1 2 0 2 2 1 2 2 2 2 2 3 2 2 4 2	128 117 744 764 568 662 751 722 738 766 564 523	257 28 53 114 177 120	2 2 12 2 3 12 2 4 12 2 5 12 2 6 12 2 7 12	204 491 195 57- 227 61	181 233 509 214 185 207 7 172 225 286 48 273	3 7 3 8 3 9 3 1 3 2 3 3	5 96 5 242 5 28 6 846 6 294 6 128	99 263 - 16 932 281 119	245 69 151 183 192 75	444444	7 0 8 0 9 0 1 1 1 2 1	86 63- 109 501 509 639	67 52 126 383 379 607	0 180 353 220 275
296 329 342 165 174 308 312 346 226 359 404 346 387 357	1 7 8 39 1 8 8 175 1 9 8 62 1 1 9 510 1 2 9 590 1 3 9 61- 1 4 9 134	45 127 162 155 45 266 456 98 585 102 36 244 128 271	2 5 2 2 6 2 2 7 2 2 8 2 2 9 2 2 9 3 2 0 3 2 1 3	497 521 385 373 217 186 196 184 117 109 523 448 1003 986	89 1 56 105 191 287 39	2 0 13 2 1 13 2 2 13 2 3 13 2 3 13 2 4 13 2 5 13 2 6 13	668 159 306 378 278 69 240	618 106 130 114 263 282 385 202 286 291 60 254 252 135	3 4 3 5 3 6 3 7 3 8 3 9 3 1	0 312 6 451 6 86 6 222 6 89 6 111 7 372	302 491 76 207 79 100 328	17 349 275 171 186 184 137	4 4 4 4 4 4 4	3 1 4 1 5 1 6 1 7 1 8 1 9 1	1215 680 118 48 86 151 222	1428 764 105 32 72 165 249	259 291 252 274 166 284 260
322 19 195 66 312 1	1 5 9 248 1 6 9 156 1 7 9 192 1 8 9 231 1 9 9 5- 1 1 10 332	250 251 162 302 177 73 179 74 26 146 262 132	2 2 3 2 3 3 2 4 3 2 5 3 2 6 3 2 7 3 2 8	895 964 609 618 467 424 416 401 229 218 371 332	330 298 347 15 10 65	2 7 13 2 0 14 2 1 14 2 2 14 2 3 14 2 3 14 2 4 14	98 57- 230 141 485 108	89 44 24 223 219 14 119 65 466 172 104 146 20	3 2 3 3 3 4 3 5 3 6 3 7 3 8	7 141 7 120 7 106 7 108 7 63 7 109 7 2 2	131 126 140 125 46 81	38 263 245 65 323 116 129	4 4 4 4 4 4	022222222222222222222222222222222222222	1080 327 438 594 157 66- 415	1110 265 371 641 167 53 455	268 16 149 281 212 133 282
50 28 55 175 01 186 77 120 21 185 68 150 98 180	1 2 10 506 1 3 10 156 1 4 10 251 1 5 10 62- 1 6 10 87 1 7 10 87 1 8 10 129	456 228 120 143 238 36 26 329 101 0 80 110 117 221	2 8 3 2 9 3 2 0 4 2 1 4 2 2 4 2 3 4 2 3 4 2 4 4	196 189 232 217 455 358 738 761 824 892 475 452 589 551	353 280 115 68 73 186 80	$2 \ 7 \ 14$ $2 \ 6 \ 14$ $2 \ 7 \ 14$ $2 \ 0 \ 15$ $2 \ 1 \ 15$ $2 \ 2 \ 15$ $2 \ 3 \ 15$	45- 55 115- 281 78 230 362	20 8 48 44 112 6 226 355 65 46 224 336 373 277	3 8 3 9 3 1 3 2 3 3 3 4 3 5	7 85 8 223 8 553 8 174 8 426 8 248	80 207 596 167 460 274	307 219 181 193 355 7	4 4 4 4 4 4	7 2 8 2 9 2 0 3 1 3 2 3	158 63- 171 1114 147 547	151 19 189 1232 126 492	138 276 280 100 60 286
135 0 327 0 92 180 431 0 109 180 166 180	1 1 11 825 1 2 11 374 1 3 11 308 1 4 11 296 1 5 11 554 1 6 11 64	823 54 317 126 252 95 292 345 622 241 60 305	2 5 4 2 6 4 2 7 4 2 8 4 2 9 4 2 9 5	289 271 262 249 276 237 145 149 160 155 1011 1120	53 63 39 68 157 57	2 4 15 2 5 15 2 6 15 2 0 16 2 1 16 2 2 16	46 69 109 335 278 121	55 298 59 297 90 23 326 25 261 30 107 150	3 6 3 7 3 8 3 1 3 2 3 3	8 169 8 88 8 227 9 535 9 150 9 144	183 93 223 498 234 148	336 162 163 102 277 23	4 4 4 4 4	3 3 4 3 5 3 6 3 7 3 8 3	721 346 66- 316 170 61-	836 345 70 329 171 51	268 251 165 98 54 292
22 180 64 180 31 0	1 7 11 246 1 8 11 202 1 1 12 422	210 66 164 133 358 158	2 1 5 2 2 5 2 3 5	316 276 469 417 643 669	50 354 318	2 3 16 2 4 16 2 5 16	362 117 164	368 116 116 132 171 30	34 35 36	9 326 9 326 9 96	251 341 96	284 280	4 4 4	9 3 0 4 1 4	742 279	696 248	200 220 287

STRUCTURE OF TRIS(THIOUREA)ZINC(II) SULPHATE

Table 3 (cont.)

h k l	10F0	10F _C a	h k 1	10F0	10F _C Ø	h k l	10F ₀	10F _C 0('n k 1	10Fo	10F _C Ø	h k 1	10F 10F	×	h k l	10F0	iof _c of
***************************************	318 38- 3223 911 124 805 38- 8773 723 723 2244 447 389- 1277 34- 389 1283 32- 229 444 447 389 1283 32- 229 444 447 389 1283 32- 229 444 447 389 1283 32- 229 444 447 1283 32- 229 421 229 1277 34- 1283 229 1277 34- 1277 34- 12777 34- 1277 34- 1277 34- 1277 34- 1277 34-	3-3 2/1 241 250 242 250 243 282 383 203 183 203 242 285 283 283 282 285 287 287 287 287 287 287 287 287 287 287 287 287 287 283 287 283 287 283 287 283 287 283 287 73 283 283 283 283 283 283 283 283 283 283 283 283 284 1128 285 288 285 288 289 281 280 292 281 281 283	<pre>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	300 14- 14- 142 180 147 122 259 177 222 259 117 177 266 297 297 668 48- 248 243 247 268 257 197 667 48- 248 243 257 216 677 197 667 48- 248 257 216 677 197 667 677 197 197 197 197 197 197 197 1	30 2423 30 2423 30 2423 30 2423 31 225 329 231 312 235 317 226 397 238 397 239 303 75 235 212 235 212 235 212 235 212 235 212 236 212 237 238 303 79 246 71 203 180 1032 180 1032 180 1032 180 1032 180 203 160 216 211 203 180 216 210 220 10 11 02 220 101 120 233 121	3 9 9 9 10<	a a 249 64 311 a 321 b 322 a 331 168 321 b 327 c 339 120 75 131 52-c 299 440 50- 244 313 52- 299 440 50- 244 313 168 165 4400 244 311 75- 131 52- 997 313 126 68 349 93 200 281 153 667 128 118 144 228 127 78 2200 227 221 220 2227 311 133 499 93 222 227 733 <	a a a a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a c a a c a a a a a a a a a a a a a a a a a a a a a a a	0 4 4 5	236 306 127 127 307 309 127 127 227 127 127 127 127 127	$\begin{array}{c} 2.64\\ 2.76\\ 2.76\\ 3.51\\ 2.76\\ 4.67\\ 7.73\\ 3.90\\ 3.25\\ 3.90\\ 3.26\\ 3.95\\ 2.70\\ 3.22\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.90\\ 3.25\\ 3.25\\ 3.25\\ 3.35\\$	a 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} 130\\ 180\\ 180\\ 180\\ 180\\ 180\\ 180\\ 180\\ 18$	777777777777777777777778888888888888888	017 11288 933 97952 2992 3999752 2992 3999752 2992 3999752 2992 3999752 2992 3999752 2992 3999752 2992 3999752 2992 300 3806 374 34 3255 2662 374 34 3255 2662 371151 3277 91522 3066 371151 32779 30522 2662 3074 4098 1810 5925 267277 305226 210 508 374 4098 1810 59252 2672 27752 27152 2662 2777 1222 27752 2662 2777 1222 27752 2662 2777 27152 2662 2777 27152 2662 2777 27152 2662 2777 27152 2664 2777 27152 2662 2777 27152 2662 2777 27152 2662 2777 2715 2667 2777 2715 2662 2777 2715 2662 2777 2715 2662 2777 2715 2662 2777 2715 2662 2777 2715 2662 2777 2715 2664 2777 2757 2664 2777 2757 2662 2777 2757 2662 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2757 2664 2777 2776 2774 2776 2774 2776 2774 2776 2776	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3 (cont.)

r.	k l	10F	10Fc	X	ħ	k 1	10F	10F	α	n	k 1	10F	10F	x	h	k 1	10F	10F	α	h	k 1	10F	10F	α	h	k 1	10F	10F	α
		-	-				-	-				-	-				-	-				Ť					Ũ	c	
8	59	115	123	0	9	53	241	256	94	9	1 15	218	225	274	10	28	164	157	174	11	35	33	24	273	12	35	202	212	78
8	69	170	183	321	9	6 3	34-	• 12	342	9	2 15	87	85	221	10	38	133	150	85	11	45	29-	18	244	12	45	44	54	70
8	7 9	120-	108	0	9	7 3	109	115	288	10	0 0	146	137	0	10	4 8	64	75	145	11	5 5	91	81	59	12	5 5	126-	126	275
8	0 10	452	439	199	9	1 4	115	105	347	10	1 0	141	143	0	10	5 8	122	135	148		6 5	19-	24	145	12	0 6	130	114	140
ê	2 10	1/5	164	143	9	2 4	219	190	13	10	2 0	339	330	0	10	6 8	600	151	155	11	1 6	154	130	72	12	1 6	118	103	59
Å	3 10	282	430	20	9	3 4	166	183	166	10	3 0	187	221	ő	10	1 0	110	101	200		2 6	337	350	357	12	2 6	88	119	41
ĕ	4 10	181	208	41	9	5 4	91	91	227	10	5 0	117	115	õ	10	2 9	106	102	81	11	4 6	183	223	163	12	4 6	56	70	34
8	5 10	32-	10	292	é	6 4	64	65	90	10	6 0	46	51	ŏ	10	3 9	115	117	307	11	5 6	87	84	241	12	0 7	279	227	284
8	6 10	144	165	216	9	7 4	22-	- 28	32	10	7 0	42	34	180	10	4 9	115	132	78	11	1 7	129	115	284	12	1 7	145	131	259
8	0 11	301	302	333	9	1 5	270	241	328	10	0 1	352	332	205	10	5 9	34	32	322	11	2 7	92	80	233	12	2 7	91	86	177
8	1 11	198	171	336	9	25	298	285	259	10	1 1	184	168	46	10	0 10	132	97	142	11	37	28-	7	315	12	37	152	163	49
8	2 11	287	297	353	9	35	98	95	337	10	2 1	262	264	80	10	1 10	228	216	139	11	47	69	76	22	12	47	76	61	156
8	3 11	38	39	330	9	4 5	183	177	70	10	3 1	413	443	124	10	2 10	89	82	352	11	5 7	96	101	104	12	8 0	235	194	287
8	5 11	130	1/1	352	9	2 2	148	168	120	10	4 1	195	225	76	10	3 10	159	160	36	11	1 8	229	217	343	12	1 8	64	68	247
8	6 11	91	105	313	9	7 5	40	2/	261	10	6 1	124	120	207	10	4 10	90	114	102	11	2 8	56-	28	320	12	28	44	40	235
ē	0 12	235	234	165	9	1 6	132	135	91	10	7 1	61	51	330	10	0 11	81	72	332	11	4 8	76	81	147	12	0 9	274	251	269
8	1 12	366	376	169	9	2 6	326	322	351	10	0 2	220	198	216	10	1 11	93	94	315	11	5 8	195-	196	178	12	1 9	109	92	265
8	2 12	63	73	115	9	3 6	45-	42	203	10	1 2	217	190	324	10	2 11	118	104	31	11	1 9	54-	25	155	12	2 9	69	77	113
8	3 12	243	262	354	9	46	181	208	161	10	2 2	130	116	330	10	3 11	151	153	61	11	29	159	155	264	12	39	13-	61	117
8	4 12	64	59	214	9	56	67	57	345	10	32	319	337	332	10	4 11	68	83	63	11	39	42	26	70	12	C 10	118	98	275
8	5 12	144	165	160	9	66	43	46	166	10	42	169	181	356	10	0 12	57	71	141	11	49	70	96	107	12	1 10	229	226	254
8	0 13	156	137	79	9	7 6	82	67	113	10	5 2	96	97	19	10	1 12	84	83	39	11	1 10	273	254	0	12	2 10	220-	196	245
8	2 1 2	149	154	313	9	1 7	399	362	220	10	6 2	68	68	244	10	2 12	168	169	353	11	2 10	49	47	40	12	0 11	133-	220	223
8	3 13	89	86	126	9	3 7	107	117	204	10	0 2	486	101	240	10	1 12	110-	136	258	11	6 10	40	55	198	12	1 0	270	26.8	329
8	4 13	69	79	334	á	4 7	205	217	109	10	1 3	400	37	291	10	0 13	144	135	146	11	1 11	5.8	52	232	13	2 0	275	15	180
8	5 13	59	77	335	é	5 7	188	206	51	10	2 3	205	191	115	10	1 13	142	133	340	11	2 11	50	50	0	13	3 0	20-	17	 G
8	0 14	509	508	159	9	6 7	120	125	126	10	3 3	196	201	146	10	2 13	192	205	43	11	3 11	34	40	74	13	4 0	15	27	Ċ
8	1 14	153	145	202	9	77	11-	- 41	234	10	43	204	229	111	10	3 13	169	277	104	11	1 12	109	111	315	13	1 1	54	54	64
8	2 14	59	56	83	9	1 8	258	213	13	10	53	45	40	182	10	0 14	138	147	251	11	2 12	201-	205	24	13	21	55	57	114
8	3 14	105	119	123	9	2 8	62	50	192	10	63	145	161	217	10	1 14	87	92	357	12	0 0	109-	8	180	13	31	38	28	71
8	4 14	74	79	21	9	3 8	43-	• 34	310	10	7 3	14-	10	124	11	1 0	327	338	0	12	1 0	132	132	0	13	4 1	69	74	295
°	1 15	122	100	135	9	4 8	/5	83		10	0 4	537	505	199		2 0	211	215		12	2 0	61	62	180	13	1 2	98	99	355
ă	2 15	91	94	1.81	-	6 8	24	210	249	10	2 4	152	1 2 6	284		3 0	42	45	180	12	3 0	26-	5	160	12	2 2	10_	21	134
8	3 15	120	141	95	ģ	1 9	338	311	266	10	3 4	229	239	331	11	5 0	128	142	180	12	5 0	82	84	c	13	4 2	79	91	191
8	0 16	257	276	194	9	2 9	142	148	249	10	4 4	111	116	322	11	6 0	18-	24	180	12	0 1	199	189	256	13	1 3	141	127	99
8	1 16	124	132	150	9	39	39-	. 7	23	10	54	105	103	185	11	1 1	171	176	290	12	1 1	69	73	313	13	2 3	51	40	27
8	2 16	38	46	60	9	49	178	208	107	10	64	163	183	210	11	2 1	96	99	214	12	21	228	228	78	13	33	34	31	3
9	1 0	193	151	0	9	5 9	176	189	77	10	74	-98	80	183	11	3 1	37-	41	239	12	3 1	79	86	104	13	4 3	13	38	221
9	2 0	116	100	0	9	6 9	33	49	308	10	0 5	139	89	299	11	4 1	65	85	43	12	4 1	193	217	96	13	1 4	96	74	253
9	4 0	124	121	180	9	2 10	225	113	256	10	1 5	226	430	239	11	6 1	/5	/9	135	12	0 2	204	182	22	13	2 4	249	239	24
9	5 0	44	26	C	é	3 10	75	62	97	10	3 5	278	296	76	11	1 2	260	271	335	12	1 2	241	231	99	13	1 5	88	71	141
9	6 0	109	121	180	9	4 10	56	52	28	10	4 5	103	106	203	11	2 2	204	196	42	12	2 2	198	191	84	13	2 5	92	89	70
9	70	72	64	G	9	5 10	163	174	193	10	5 5	192	210	248	11	32	78	85	304	12	32	114	114	52	13	3 5	14-	29	90
9	1 1	335	313	267	9	6 10	11-	- 15	211	10	65	75	82	304	11	42	122	135	252	12	4 2	178	212	94	13	16	51	135	19
9	2 1	491	484	288	9	1 11	152	144	343	10	0 6	349	305	172	11	5 2	220	256	150	12	5 2	104	138	101	13	2 6	102	104	313
9	3 1	115	121	194	9	2 11	238	229	261	10	1 6	313	293	190	11	6 2	25	30	175	12	0 3	187	163	259	13	3 6	11-	38	29
9	5 1	128	143	78	9	3 11	121	120	81	10	2 6	132	134	140	11	1 3	/5- 80	72	276	12	1 3	152	130	202	13	1 7	21-	87	4
é	6 1	104	107	92	9	5 11	79	92	138	10	4 6	104	106	200	11	2 2	35-	30	231	12	3 3	237	245	104	13	1 8	24-	144	43
9	7 1	111	104	304	9	1 12	92	77	248	10	5 6	172	190	198	11	4 3	81	95	90	12	4 3	67	78	49	14	o o	327	284	ō
9	12	416	371	305	9	2 12	231	235	13	10	6 6	165	193	177	11	5 3	65	60	240	12	5 3	18-	26	290	14	1 0	117	110	0
9	2 2	281	258	84	9	3 12	29-	17	149	10	07	255	233	263	11	63	45	43	21	12	04	385	356	72	14	01	344	310	275
9	3 2	108	103	345	9	4 12	171	189	220	10	1 7	306	296	265	11	1 4	100	103	2	12	1 4	169	143	91	14	1 1	135	124	248
9	4 2	214	175	242	9	> 12	87-	. 73	340	10	27	118	112	278	11	24	242	256	343	12	24	197	207	37	14	0 2	190	1/0	11
9	6 2	214	243	180	9	2 1 2	192	194	249	10	57	/2	20	274	11	3 4	45	204	165	12	54 66	126	254	79	14	1 2	106	110	323
é	7 2	157	158	312	9	3 13	27	32	281	10	5 7	153	174	238	11	- 4 5 4	104	126	107	12	5 4	66	86	88	14	1 7	142	139	285
9	1 3	416	370	282	ģ	4 13	56	60	86	10	6 7	140	162	271	11	6 4	13-	8	20	12	0 5	157	109	280	14	0 4	39	71	332
9	2 3	183	167	167	9	1 14	64	63	277	10	0 8	277	244	1.69	11	1 5	82	85	216	12	1 5	222	207	267	14	1 4	21-	26	55
9	3 3	92	86	242	ġ	2 14	99	104	17	10	1 8	198	196	164	11	2 5	64	61	1	12	2 5	45-	22	175	14	05	22-	46	167

At the end of the refinement the atomic parameters were as reported in Table 1, which also gives the e.s.d.'s (Cruickshank, 1949, 1950) and the ratios |r| = (e.s.d.)/(shift) for each coordinate. The B_{ij} 's were determined by the method of Nardelli & Fava (1960) using the second derivatives of the electron density in the differential synthesis; their e.s.d.'s were calculated following Cruickshank (1956). In Table 2 the observed atomic peak shapes are compared with the calculated ones. The structure factors reported in Table 3 are calculated with the final parameters of Table 1 using the atomic scattering factors of Thomas & Umeda (1957) for Zn²⁺, of Dawson (1960) for S and of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for O, N and C.

No attempt was made to locate the hydrogen atoms directly. Their coordinates, reported in Table 4, were calculated assuming an sp^2 bond configuration for each nitrogen atom with a distance N-H of 1.03 Å: with these coordinates unacceptable contacts are not observed. In Table 4, the values of the electron density

found at the points corresponding to the assumed coordinates of the hydrogen atoms are also reported.

Table 4. Calculated fractional coordinates $(\times 10^3)$ and corresponding values of ϱ_0 for hydrogen atoms in thiourea molecules

	x/a	y/b	z/c	Qo
H(1)	256	- 499	-237	0.6 e.Å-3
H(2)	117	- 199	-275	0.6
H(3)	-41	-100	-83	1.1
H(4)	- 52	-192	188	1.0
H(5)	- 33	- 345	220	0.6
H(6)	- 159	-212	196	1.2
H(7)	141	- 308	145	0.7
H(8)	152	-147	64	0.9
H(9)	- 291	573	- 92	1.1
H(10)	- 206	490	-180	0.8
H(11)	- 86	403	64	1.3
H(12)	-222	523	49	0.8

All the calculations were performed on the Olivetti Elea 6001/S computer of the Centro di Calcolo Elet-

tronico of the University of Parma, using the programs of Nardelli, Musatti, Domiano & Andreetti (1964, 1965).

Discussion

Fig. 1 represents a clinographic projection of a coordination polyhedron, showing that each zinc atom is tetrahedrally surrounded by three sulphur atoms from three thiourea molecules and one oxygen atom from a sulphate group. Distances and angles in the coordination polyhedron are:

Zn-S(2)	2.332 ± 4 A
Zn-S(3)	2·309 ± 4
Zn-S(4)	2.323 ± 4
Zn-O(1)	1·975 <u>+</u> 9
S(2) - Zn - S(3)	$114.6 + 0.1^{\circ}$
S(2) - Zn - S(4)	102.4 ± 0.1
S(3) - Zn - S(4)	$111 \cdot 1 \pm 0 \cdot 1$
S(2)-Zn-O(1)	107.4 ± 0.3
S(3)– Zn – $O(1)$	113.9 ± 0.3
S(4)– Zn – $O(1)$	106.6 ± 0.3

Little significance can be attributed to the differences among the three Zn–S bond distances, which are comparable to the sum of Pauling's covalent radii (2.35 Å) and to the values found in other tetrahedral zinc compounds [e.g. 2.261 ± 0.004 , 2.326 ± 0.002 Å in bis-(thiourea)zinc acetate (Cavalca, Fava Gasparri, Andreetti & Domiano, 1966), 2.331 ± 0.003 , 2.355 ± 0.003 and 2.383 ± 0.002 Å in bis(diethyldithiocarbamate)zinc (Bonamico, Mazzone, Vaciago & Zambonelli, 1965), 2.286 ± 0.006 and 2.298 ± 0.006 Å in mono(thiosemicarbazide)zinc chloride (Cavalca, Nardelli & Branchi, 1960) and 2.35 ± 0.01 Å in bis(thiourea)zinc chloride (Kunchur & Truter, 1958)].

The Zn-O $(1.975 \pm 0.009 \text{ Å})$ distance agrees with the values usually found in tetrahedral zinc complexes [e.g. 1.973 ± 0.006 and $1.954 \pm 0.008 \text{ Å}$ in bis(thiourea)zinc acetate].

The orientation of the SO_4^{2-} group is determined by the Zn-O(1) interaction (Zn-O(1)-S(1)125.6 ± 0.6°) and by the hydrogen bonding involving the oxygen atoms and the NH₂ groups. These effects are also responsible for the lack of C_{3v} symmetry in the coordination polyhedron. The distances and angles in the SO₄²⁻

Fig.1. Clinographic projection of a coordination polyhedron

Table 5. Bo	nd lengths	and angles i	'n some	sulphates
-------------	------------	--------------	---------	-----------

	S-O		Angle O-S-	-0	
	Range	σ_{\max}	Range	σ_{\max}	
Present work	1·454–1·480 Å	0·014 Å	107·5–110·6°	0.7°	
$CdtuSO_4.2H_2O$	1.44—1.48	0.020	108.0-111.3	1.1	Cavalca, Domiano, Fava Gasparri & Boldrini (1967).
$Li_2SO_4.H_2O$	1.473–1.487	0.002	108-4-110-9	0.1	Larson (1965).
(CH ₃ NH)[Al(H ₂ O) ₆](SO ₄) ₂ .6H ₂ O	1.473-1.494	0.005	109.2-109.6	0.3	Okava, Ahmed, Pepinsky & Vand (1957).
ZrSO ₄ .4H ₂ O	1.443–1.486	0.020	106.9-112.5	0.8	Singer & Cromer (1959).
$Mg(NH_4)_2(SO_4)_2.6H_2O$	1.459–1.481	0.005	108.4-110.7	0.3	Margulis & Templeton (1962).
$Ni(NH_4)_2(SO_4)_2.6H_2O$	1.470–1.486	0.015	108.6-110.2	0.6	Montgomery & Lingafelter (1964b).
MgSO ₄ .4H ₂ O	1.466-1.480	0.006			Baur (1964 <i>a</i>).
MgSO ₄ .6H ₂ O	1.460-1.482	0.003	<u> </u>		Zalkin, Ruben & Templeton (1964).
$MgSO_4.7H_2O$	1.460-1.482	0.004	108.6-110.2	0.3	Baur (1964c).
$[CH_3SC(NH_2)_2]_2SO_4$	1.456–1.470	0.006	109.0-109.8	0.4	Stam (1962).
$Zn(NH_4)_2SO_4.6H_2O$	1.462–1.488	0.015	108.3-110.5	0.6	Montgomery & Lingafelter (1964a).
CoSO ₄ .6H ₂ O	1.45—1.51	0.030		—	Zalkin, Ruben & Templeton (1962).
$Ni(NH_4)_2(SO_4)_2$	1.461.52	0.025	109.3-109.7	4·0	Grimes, Kay & Webb (1963).
$Li(N_2H_5).SO_4$	1.45-1.50	0.030	108.2-110.2	1.0	Brown (1964).
HgSO ₄ .H ₂ O	1.46—1.49	0.020	109.0-110.0	1.0	Templeton, Templeton & Zalkin (1964).
FeSO ₄ .7H ₂ O	1.462–1.488	`0·004	108.4–110.1	0.3	Baur (1964b).
$(NH_4)_2Cu(SO_4)_2.6H_2O$	1.466–1.484	0.005	108.6-110.6	0.2	Montgomery & Lingafelter (1966a).
$(NH_3)_5CoO_2Co(NH_3)_5.SO_4(HSO_4)_3$	1.421–1.483	0.020	106.3-114.3	2.0	Schaefer & Marsh (1966).
$CsAl(SO_4)_2.12H_2O$	1.473–1.479	0.009	109.0-109.9	2.0	Cromer, Kay & Larson (1966).
$NaNH_4SO_4.2H_2O$	1.452–1.492	0.014	107.8-110.9	0.7	Corazza, Sabelli & Giuseppetti (1967).
$Cd(NH_4)_2(SO_4)_2.6H_2O$	1.459–1.483	0.008	108.0-111.4	0.3	Montgomery & Lingafelter (1966b).
$Mn(NH_4)_2(SO_4)_2.6H_2O$	1.452-1.475	0.007	108.5-110.1	0.3	Montgomery & Lingafelter (1966c).
$Cu_2(NH_2CH_3)_4(OH)_2SO_4.H_2O$	1.464–1.495	0.016	108.0-111.7	1.1	Iitaka, Shimizu & Kwan (1966).
CuSO ₄ , 5H ₂ O	1.467–1.490				Bacon (1962).

.

group are in good agreement with those generally observed in some sulphates, as quoted in Table 5:

1·474 ± 10 Å
1.480 ± 13
1.454 ± 14
1.474 ± 12
109·4±0·6°
110.1 ± 0.6
107.5 ± 0.6
110.6 ± 0.7
108.8 ± 0.7
110.3 ± 0.7

The three independent thiourea molecules are planar: their least-squares planes are quoted in Table 6 with bond distances and angles. From these values, if compared with those found in uncomplexed thiourea, it is

Fig. 2. Zntu₃(SO₄). Diagrammatic projection of the structure along [010].

clear that coordination does not significantly influence the dimensions of the ligand as observed for bis-(thiourea)zinc acetate. The three thiourea molecules are tilted with respect to the Zn–S bonds by the angles Zn–S(2)–C(1) $101.9\pm0.4^{\circ}$, Zn–S(3)–C(2) $107.7\pm0.4^{\circ}$ and Zn–S(4)–C(3) $107.0\pm0.5^{\circ}$, which are consistent with those found in other thiourea complexes [*e.g.* $100.6\pm0.3^{\circ}$ and $101.2\pm0.3^{\circ}$ in bis(thiourea)zinc acetate; 113° in bis(thiourea)cadmium chloride (Nardelli, Cavalca & Braibanti, 1957), 108.6° in bis(thiourea)zinc chloride (Kunchur & Truter, 1958), 105° , 108° , 113° in tris(thiourea)copper(I) chloride (Okaya & Knobler, 1964)].

The following $N \cdots O$ distances can be considered as hydrogen bonds (the corresponding H–N–O angles are quoted in square brackets; the e.s.d.'s are all 0.01 Å):

$N(6^{iv}) - H(12^{iv})$	 O(1)	2•93 Å	[8·4°]	
$N(2^{i}) - H(4^{i})$	 O(2)	2.86	[17.5]	
$N(3^{ii}) - H(6^{ii})$	 O(2)	3.02	[7.5]	
N(6) - H(11)	 O(3)	2.99	[1.6]	
$N(1^{i}) - H(2^{i})$	 O(3)	2.98	[17.5]	
$N(5^{iii}) - H(10^{iii})$	 O(4)	2.94	[8.1]	
$N(4^{v}) - H(7^{v})$	 O(4)	2.84	[8·9]	

The packing in the crystal and the orientation of the thiourea molecules are determined by these interactions [Fig.2]. Other distances less than 3.5 Å are as follows:

S(1)–N(3 ⁱⁱ)	3·46 Å
$S(2) - S(3^{ii})$	3.30
$S(3) - N(1^{i})$	3.47
$O(2) - N(1^{vi})$	3.31
$O(3) - N(3^{v})$	3.02
$O(3) - N(2^{i})$	3.37
$O(4) - N(1^{vii})$	3.43
$O(4) - N(3^{ii})$	3.23
$O(4) - N(6^{iv})$	3.18
$N(3)-N(1^{i})$	3.46

The superscripts have the following significance:

i	$\bar{x}, \bar{y}, z + \frac{1}{2}$	v x, 1+y, z
ii	$x + \frac{1}{2}, \bar{y}, z$	vi $\frac{1}{2} - x, y, z + \frac{1}{2}$
iii	$x, 1-y, z+\frac{1}{2}$	vii $\frac{1}{2} - x, 1 + y, z + \frac{1}{2}$
iv	$x + \frac{1}{2}, 1 - y, \overline{z}$	viii $\bar{x} - \frac{1}{2}, 1 - y, z$

This work was done with the financial support of the Consiglio Nazionale delle Ricerche (Roma).

Table 6. Least-squares planes, bond distances and angles for the thiourea molecules

	$\begin{array}{ll}tu(1) & S(2)C(1)N(1)N(2)\\tu(2) & S(3)C(2)N(3)N(4)\\tu(3) & S(4)C(3)N(5)N(6)\end{array}$		-0.2415x + 0.8960y - 0.3727z = -0.1095 0.3083x + 0.6625y + 0.6827z = -0.4364 -0.5300x - 0.8473y + 0.0349z = -2.1095	
	S-C	C-N	S-C-N	N-C-N
tu(1) tu(2) tu(3) tu*	1.717±1 1.731±1 1.725±1 1.720±9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rl} \pm 18 & 116 \cdot 7 \pm 1 \cdot 1 - 125 \cdot 5 \pm 0 \cdot 9^{\circ} \\ \pm 20 & 117 \cdot 0 \pm 1 \cdot 1 - 123 \cdot 7 \pm 1 \cdot 1 \\ \pm 19 & 115 \cdot 8 \pm 0 \cdot 9 - 123 \cdot 4 \pm 1 \cdot 1 \\ & 120 \cdot 5 \pm 0 \cdot 5 \end{array}$	$\begin{array}{c} 120.7 \pm 1.3 ^{\circ} \\ 119.3 \pm 1.4 \\ 120.8 \pm 1.1 \\ 119.0 \pm 0.5 \end{array}$

* Uncomplexed (Truter, 1967).

References

- BACON, G. E. (1962). Proc. Roy. Soc. A266, 95.
- BAUR, W. H. (1964a). Acta Cryst. 17, 863.
- BAUR, W. H. (1964b). Acta Cryst. 17, 1167.
- BAUR, W. H. (1964c). Acta Cryst. 17, 1361.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BONAMICO, M., MAZZONE, G., VACIAGO, A. & ZAMBO-NELLI, L. (1965). Acta Cryst. 19, 898.
- BROWN, D. I. (1964). Acta Cryst. 17, 654.
- CAVALCA, L., DOMIANO, P., FAVA GASPARRI, G. & BOL-DRINI, P. (1967). Acta Cryst. 22, 878.
- CAVALCA, L., FAVA GASPARRI, G., ANDREETTI, G. D. & DOMIANO, P. (1967). Acta Cryst. 22, 90.
- CAVALCA, L., NARDELLI, M. & BRANCHI, G. (1960). Acta Cryst. 13, 688.
- CORAZZA, E., SABELLI, C. & GIUSEPPETTI, G. (1967). Acta Cryst. 22, 683.
- CROMER, DON T., KAY, M. I. & LARSON, A. L. (1966). Acta Cryst. 21, 383.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1950). Acta Cryst. 3, 72.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- GRIMES, N. W., KAY, H. F. & WEBB, N. N. (1963). Acta Cryst. 16, 823.
- IITAKA, Y., SHIMIZU, K. & KWAN, T. (1966). Acta Cryst. 20, 803.
- KUNCHUR, N. R. & TRUTER, M. R. (1958b). J. Chem. Soc. p. 3478.
- LARSON, A. L. (1965). Acta Cryst. 18, 717.
- MARGULIS, T. N. & TEMPLETON, D. H. (1962). Z. Kristallogr. 117, 344.

- MONTGOMERY, H. & LINGAFELTER, E. C. (1964a). Acta Cryst. 17, 1295.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1964b). Acta Cryst. 17, 1478.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1966a). Acta Cryst. 20, 659.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1966b). Acta Cryst. 20, 728.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1966c). Acta Cryst. 20, 731.
- NARDELLI, M., CAVALCA, L. & BRAIBANTI, A. (1957). Gazz. chim. Ital. 87, 137.
- NARDELLI, M. & CHIERICI, I. (1958). Ric. sci. 28, 1016.
- NARDELLI, M. & FAVA, G. (1960). Ric. sci. 30, 898.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. D. (1964). *Ric. sci.* 34, II-A, 711.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. D. (1965). *Ric. sci.* 35, II-A, 469, 477, 807.
- OKAYA, Y., AHMED, M. S., PEPINSKY, R. & VAND, V. (1957). Z. Kristallogr. 109, 367.
- OKAYA, Y. & KNOBLER, C. B. (1964). Acta Cryst. 17, 928.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- SCHAEFER, W. P. & MARSH, R. E. (1966). Acta Cryst. 21, 735.
- SINGER, J. & CROMER, D. T. (1959). Acta Cryst. 12, 719.
- STAM, C. H. (1962). Acta Cryst. 15, 317.
- TEMPLETON, L., TEMPLETON, D. H. & ZALKIN, A. (1964). Acta Cryst. 17, 933.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- TRUTER, M. R. (1967). Acta Cryst. 22, 556.
- ZALKIN, A., RUBEN, H. & TEMPLETON, D. H. (1962). Acta Cryst. 15, 1219.
- ZALKIN, A., RUBEN, H. & TEMPLETON, D. H. (1964). Acta Cryst. 17, 235.

Acta Cryst. (1968). B24, 690

Ein Beitrag zur Kristallchemie der Schichtsilikate

VON F. LIEBAU

Mineralogisch-Petrographisches Institut der Universität Kiel, Deutschland

(Eingegangen am 3. April 1967)

Herrn Prof. Dr. G. Menzer zum 70. Geburtstag gewidmet

The great number of $[Si_2O_5]$ -layer silicates is primarily due to the differences in size and charge of the cations. Anhydrous layer-silicates show an increasing degree of convolution of layers with decreasing radius/charge ratio of cations, the size of cation sites between layers decreasing at the same time. This explains why 1+ cations form anhydrous layer silicates and 2+ cations of small or medium size and 3+ cations do not. In hydrous layer silicates the $[MeO(OH)_n]$ polyhedra are 'effective' cations. The deviation from plane conformation increases with increasing ratio radius/charge, from Al₄[Si₄O₁₀](OH)₈ and the bent serpentines to the ruffled ones of pyrosmalite and apophyllite.

Zu der grossen Gruppe der Schicht- oder Phyllosilikate zählen bekanntlich alle die Silikate, bei denen die $[SiO_4]$ -Tetraeder über gemeinsame Sauerstoffatome zu zweidimensional ausgedehnten Schichten verknüpft sind. Wenn auch die Art der Verknüpfung der Tetraeder zu Schichten und damit deren Symmetrie sehr verschieden sein kann – eine systematische Übersicht gibt Liebau (1962) – so gleichen sich doch alle bisher beschriebenen Silikatschichten darin, dass jedes ihrer $[SiO_4]$ -Tetraeder über gemeinsame Sauerstoffatome an